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It is shown that the heat influx through a stack of lamellar-vacuum insulation, al- 
ternating with cooled shields, can be reduced substantially by an optimum choice 
of the insulation packing density and the thickness of the layers between shields. 

Lamellar-vacuum insulation (LVI), which is used extensively in cryogenic engineering, is 
a multilayer stack, consisting of heat shields separated by inserts. Heat transfer between 
neighboring layers (heat shields) occurs simultaneously by radiation and thermal conduction 
through the material of the insert and residual-gas molecules. The efficiency of LVI de- 
pends to a considerable degree on the residual-gas pressure in the space between layers. 
The shields are perforated to reduce this pressure. 

According to the experimental data of [i, 2] the thermal conductivity of LVI is vir- 
tually independant of the thickness of the stack but is determined by the layer-packing 
density and the boundary temperatures of the stack. When the number of layers increases the 
radiative heat transfer per unit thickness of insulation decreases and the thermal conduc- 
tion grows. The effective thermal conductivity, therefore, should reach a minimtun at some 
optimum packing density. This is also confirmed by the results of theoretical studies [3,4]. 

When LVI is used in conjunction with shields cooled by exhaust cryogen vapor from the 
cryostating zone the problem arises of determining both the optimum arrangement of shields 
and optimum packing of layers of insulation between them. The problem of the optimum ar- 
rangement of cooled shields was considered in [5]. In this paper, besides that we also 
solve the problem of optimum LVI array. 

We consider parallel cold and hot surfaces at the temperatures T c and Th, respectively. 
The cold boundary is a boundary of the cryostating zone. Between the two surfaces are N 
shields (see Fig. i), which are cooled successively by exhaust cryogen vapor from the cry- 
ostating zone. The spaces in this system are filled witch LVI. In particular, if the LVI 
packing density Pi = 0, it is assumed that there is no LVI in the interval. The total size 
of the intervals is L. 

The temperature of the cold boundary surface is assumed to be equal to the saturation 
temperature of the cryogen in the cryostating zone while the temperatures of the cooled 
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Fig. i. Planar heat-insulating 
system of lamellar~vacuum in- 
sulation and cooled shields. 
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shields are assumed to be uniform. The head exchage of the shields with the cryogen flows 
is ideal, i.e., the cryogen leaving a shield has the temperature of that shield. The pre- 
sure in the LVI layers is assumed to be so low (< 13.3 mPa) that molecular transport in the 
system does not play any appreciable role [4, 6]. In the assumptions made here the heat- 
balance equations for the cooled shields have the form 

qi+l--qi = Gcv(T~--T~-O, i = 1 . . . . .  N, ( 1 )  

where qi is the density of the heat flux through the LVI in the i-th interval, formed the 
(i - l)-th and i-th cooled shields and T i is the temperature of the i-th shield [the cold 
and hot boundary surfaces are assumed to be the 0-th and (N + l)-th shields]. 

The heat-flux density is 

qi = A~ ('/"i - -  Ti_l),  " 

where A i is the thermal conductivity of the i-th interval, calculated from the formula 

( 2 )  

j Zdli, V~ :/= O, 
A~ 

eocr(T~_~ + TO (Ti-I~ + T~ ), Pi = O. 
(3) 

In turn, the mean-integrated thermal conductivity of the LVI stack is 

b ~(Ti i, TO, = a(T,-1-I-TO(T~-, +T~) - I -  ~ _ (4 )  

where h i is the_distance between the LVI layers in the i-th interval in the stack (i = 
i, ..., N + I); A m is the mean-integrated thermal conductivity of the material of the insert, 
and a and b are coefficients that depend, respectively, on the characteristics of the heat 
shields (degree of blackness, perforation) and the inserts of the given LVI. Formula (4) 
is derived by integrating the theoretical-empirical correlation obtained in [3] for the 
transverse thermal conductivity of the LVI stack, 

b 
Z• (r) = 4aT3h + ~ ).~ (T). (5)  

In the steady-state regime the flow rate of the exhaust cryogen vapor satisfies the 
equation 

6 (G) ---- q~ (G; |, h) G = 0, ( 6 )  
r 

where l = (11 .... , IN+I) and h = (hl ..... hN+O. 

The root of Eq. (6) corresponds to self-balancing flow rate G, = G(I, h). 

The system under consideration is optimized in order to minimize the heat influx into 
the cryostating zone, 

q ~ = q a ( G , ,  I, h). ( 7 )  

The role of the variable parameters in this case is played by vector |, and h. The com- 
ponents of the first vector obey the condition 

N+I 
= L,  lo. (8) 

i = l  

We note that in this problem the number of variables can be halved by eliminating the vector 
h. The optimum values of the components of this vector are found analytical as the minimum 
points of expressions (4): 

(9) 

, < .  o 
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If it turns out that for some interval the packing density of LVI layers per cm, Pi = i022/h0i, 
is smaller than the minimum allowable packing 90, then in this case Pi can be defined in one 
of two variants: a) Pi = 0 and heat transfer between the cooled shields occurs only through 
radiation; b) 9i = P0, i.e., the packing density is assumed to be equal to the minimum allow- 
able value and h0i = 10-2/90. The better of these two possibilities is realized, i.e., the 
one for which the conductiity of the interval under consideration is lower. 

After this the algorithm for calculating the objective function at a fixed consists 

of the following. 

At a given flow rate G the system of equations (1)-(4) is reduced to nonlinear three- 

point equations 

AiTi-1 -- DiT~ + B~Ti+I = 0, (i0) 

where A i = A i + Gc_, B i = Ai+ l and D i = A i + B i, i = i, ..., N. System (10) in the tempera- 
tures of the shiel~s is solved by the method of scalar implicit differencing [7] combined with 
iterations over nonlinear ities. The coefficients in (i0) in this case are calculated from 
the values of the temperature from the previous iteration. The values T(~ i = Th, i _> i serve 
as the initial approximation. After calculating the temperature with the desired accuracy 
we f!-a thz be~t flux ql(G, 1 ) and the discrepancy 6(G). From physical considerations it is 
clear that 6 is a continuous, monotonically decreasing function of the flow rate and 6(0)> 0 
and 6(=) < 0. We calculate the unique solution of Eq. (6) using the iterative method of false 
positions [8]. The value of the objective function is defined as the heat in influx the 
cryostating zone in the case of a self-balancing flow rate. The minimum of the objective 
function min q1(G,, | ) is found by the penalty function method. 

1 

We note that the above algorithm is also applicable to the problem in which the shields 
are attached to a nozzle that is ideally cooled by exhaust vapor. In this case instead of 

(i) we consider the equations 

q~+~ 4_ Gc v Ti+t ~ Tt = qi + Gcl---'~ Ti - -  Ti_l 

Ocp li+l S exp ~ ~nFn ~ S 1 -- exp ~'nFn 

where In is the thermal conductivity of the material of the orifice, F n is the cross section 
of the orifice, and S is the area of the boundary surface. 

The calculations were carried out for an LVI sample consisting of a perforated corru- 
gated PET (polyethylene terephthalate) film metallized on both sides with inserts of EVTI-7 
fiberglass mat. The tabulated dependence of the thermal conductivity on the temperature 
for the material of the inserts (Pyrex glass) is approximated to within 3% in the range 
4-350 K by the polynomial 

~m(7~= 9.456"tO-2-}-3 .285"lO-3T-F 2 .494 . lO-ST2-1 .505" tO-~T~+2"238"IO-~~  

The parameters a = 1.89"i0 -s and b = 1.96"i0 -8 in (5) were determined by the method of 
least squares. In this case the functions T 3 and Im(T) were used as the basis functions 
and the experimental data of [2] for the LVI sample under consideration with a packing den- 
sity of 31 shields/cm were used as the results of measurements~ The reduced degree of black- 

TABLE i. Comparison of the Calculated Variants 

No. of variant I 2 3 4 

Heat influx into th~ 4,18" 
cryo&tating zone q l,} 5,81 
mW/m ~ | 
Relative deteriora-| 0 
tion % | 0 

4,82 
7,18 

15 
24 

5,74 
8,34 

37 
44 

6, 10 
8,77 

! 46 
51 

*The values in the upper row correspond to N = 4 and 
those in the lower row, to N = 2. 
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TABLE 2. 
Shields System at N = 4 

Results of Optimization of LVl/Cooled- 

;l ivarlanto calculation 
I J 2 3 

i 

I1~ P i ,  Cm-I T i, K li, ~ Pi, cm-I T i, K l i, 

10 
I I  
17 
26 

39 20 
86 20 

159 20 
221 20 
- -  20 

i o 
13" 
2O 
27 

40 
115 
186 
246 

I I  
12 
17 
25 
35 

10 
11 
22 
23 
35 

C • I  Ti" K 

20 16 
20 48 
20 I09 
20 199 
20 - -  

TABLE 3 
Shields System at N = 2 

Results of Optimization of LVl/Cooled- 

I 2 

i " , Pi, cm-I I Tt, K l t ,  r~a I Pi, c m - l l T i ,  K It, rim1 

331 1o156 33 i i  179 
34 24 

22 
29 
49 

lo I ol42 33 I 150 
57 23 -- 

3 

P i '  T t ,  K 
c m  -1  

20 32 
20 129 
20 

ness for neighboring cooled shields was taken to be equal to the reduced degree of blackness 
of the neighboring shields of the LVI: e 0 = a/o = 0.033. The other parameters were L = 10 cm, 
s = I cm, P0 = i0 cm -I, T c = 4.2 K, T h = 300 K, r = 2.06-10 ~ J/Kg, and Cp = 5200 J.K-i/kg. 

We consider the following variants: 

i) both the arrangement of the cooled shields and the packing density of the LVI layers 
are optimized; 

2) the packing density of the LVI layers is optimized with the cooled shields arrayed 
equidistantly; 

3) the arrangement of the shields is optimized with a given uniform arrangement of the 
LVI layers: Pi = 20 cm -I (i ~ i); 

4) the shields are arranged equidistantly and the packing density of the LVI layers is 
uniform (p = 20 cm-l). 

The results of the calculations are given in Tables i-3. 

From Table i we see that the worst variant of a heat-insulating system is the one with 
equidistant cooled shields and uniformly packed LVI in all the intervals. When uniform LVI 
packing is maintained optimiztion of the shield arrangement considerably worsens the effi- 
ciency of the heat-insulating system. The system is improved substantially, however, by op- 
timization of the packing and to an even greater extent by optimization of both the LVI 
packing and the arrangement of the cooled shields. The efficiency of the system also de- 
pends significantly on an increase in the number of cooled shields. Thus (see variant i) 
the heat influx into the cryostating zone with four shields is almost 40% lower than in the 
case with two shields. 

An analysis of Tables 2 and 3 indicates that it is inadvisable to use LVI in the in- 
terval between the cold boundary surface and its neighboring shield if the temperature of 
the shield is below 50 K. It is recommended that the minimum interal allowable bydesign 
considerations be chosen in this case. 

NOTATION 

q, heat flux density; T, temperature; G, Cp, and r, mass flow, specific isobaric heat 
capacity, and heat of vaporization of the cryogen; N, number of cooled shields; s and s 
shield separation and the minimum allowable shield separation; p and P0, VLI packing density 
and the minimum allowable packing density; L, sum of the intervals between shields (including 
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the boundary surfaces); h, distance between LVI layers; A, thermal conductivity of an in- 
terval; %m, mean integrated thermal conductivity; g0, reduced degree of balckness of neigh- 
boring shields; a, Stefan-Boltzmann constant; and the subscript is the number of an interval 
or a cooled shield. 
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CONTRIBUTION TO THE THEORY OF THE VISCOELASTICITY 

OF DISPERSE SYSTEMS UNDER THE CONDITIONS OF HEAT 

AND MASS TRANSFER 
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and V. P. Kholod 

UDC 677:620.193.19 

An open system of equations for the simultaneous description of heat andmass trans- 
fer and deformation processes in disperse materials is derived on the basis of the 
Boltzmann-Volterra theory and the first law of thermodynamics for open systems. 

Introduction. The problem of the interplay of heat and mass transfer and deformation 
phenomena is of unquestionable interest from the theoretical and applied standpoints. It is 
important, e.g., in problems of the optimization of the technological moisture-heat treat- 
ment processes, including drying of disperse materials under loading and deformation. Modern 
science knows of a number of theoretical methods for taking account of the effect of heat 
and moisture on the deformation properties of materials. Within the framework of the heredi- 
tary Boltzmann-Volterra theory [I] the effect of heat and moisture on creep of materials and 
stress relaxation in them is usually taken into account by the method of factor-time analog- 
ies [2, 3] in qualitative agreement with experiment. It seems more consistent, however, not 
to make a one-sided allowance for only the effect of heat transfer on the rheological pro- 
cesses but rather to describe their effect on each other. Clearly, such a complex descrip- 
tion requires the invocation of not only mechanical laws but also thermodynamic laws and 
their interaction. 

In this communication we propose a variant of the complex description of the above-men- 
tioned phenomena on the basis of the hereditary Boltzmann-Volterra relations and the first 
law of thermodynamics for open systems, using a number of model relations. As a result we 
obtain a system of equations for the concurrent description of the heat and mass transfer 
and deformation processes and make a preliminary analysis of a number of its genera] results. 
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